chipd8/source/app.d

545 lines
10 KiB
D
Raw Normal View History

import std.stdio;
import derelict.sdl2.sdl;
2018-06-22 23:54:39 +01:00
import derelict.imgui.imgui;
import glad.gl.all;
2018-06-22 23:54:39 +01:00
import window;
import imgui;
string doCapture(string sym, uint start, uint end)(){
import std.string : format;
enum bits = end - start;
static if (bits > 16) {
alias RT = uint;
} else static if (bits > 8) {
alias RT = ushort;
} else {
alias RT = ubyte;
}
auto str = "0b";
foreach (i; 0 .. end) {
if (i >= start) str ~= "1";
else str ~= "0";
}
return format(q{
%s result = ((%s & %s) >> %d);
return result;
}, RT.stringof, sym, str, start);
} // doCapture
auto capture(uint start, uint end)(ushort op) {
enum str = doCapture!(op.stringof, start, end)();
mixin(str);
} // capture
struct Chip8 {
alias OpCode = ushort;
alias ProgramCounter = ushort;
alias Memory = ubyte[4096];
alias Stack = ushort[16];
alias Register = ubyte;
alias Registers = Register[16];
alias IndexRegister = ushort;
alias KeyPad = ubyte[16];
struct CPU {
OpCode opcode = 0; //current opcode
ProgramCounter pc = 0x200;
Registers v; //16 general purpose registers
IndexRegister i;
Register delay_timer;
Register sound_timer;
} // CPU
CPU cpu;
Memory ram;
Stack stack;
ubyte sp;
KeyPad kp;
ubyte[64*32] screen_buf;
ubyte[3][64*32] screen_data;
bool run_flag;
bool draw_flag;
void load(size_t offset, in ubyte[] data) {
assert(offset + data.length < ram.length);
ram[offset .. offset + data.length] = data[];
} // load
void step() {
cpu.opcode = ram[cpu.pc] << 8 | ram[cpu.pc + 1];
auto pc_target = cast(ProgramCounter)(cpu.pc + 2);
writefln("opcode: 0x%X", cpu.opcode);
switch (cpu.opcode & 0xF000) with (cpu) {
case 0x0000:
switch (cpu.opcode & 0x0FFF) {
case 0x00E0: // 0x00E0 Clears the screen.
screen_buf[0..$] = 0;
draw_flag = true;
break;
case 0x00EE: // 0x00EE Returns from a subroutine.
pc_target = stack[--sp];
break;
default: // 0x0NNN Calls RCA 1802 program at address NNN. Not necessary for most ROMs.
//assert(0, "0x0NNN RCA 1802 program opcode not implemented!");
break;
}
break;
case 0x1000: // 0x1NNN Jumps to address NNN.
pc_target = cpu.opcode.capture!(0, 12);
break;
case 0x2000: // 0x2NNN Calls subroutine at NNN.
stack[sp++] = cpu.pc;
pc_target = cpu.opcode.capture!(0, 12);
break;
case 0x3000: // 0x3XNN Skips the next instruction if VX equals NN.
if (cpu.v[cpu.opcode.capture!(8, 12)] == cpu.opcode.capture!(0, 8)) {
pc_target += 2;
}
break;
case 0x4000: // 0x4XNN Skips the next instruction if VX doesn't equal NN.
if (cpu.v[cpu.opcode.capture!(8, 12)] != cpu.opcode.capture!(0, 8)) {
pc_target += 2;
}
break;
case 0x5000: // 0x5XYO Skips the next instruction if VX equals VY.
if (cpu.v[cpu.opcode.capture!(8, 12)] == cpu.v[cpu.opcode.capture!(4, 8)]) {
pc_target += 2;
}
break;
case 0x6000: // 0x6XNN Sets VX to NN.
cpu.v[cpu.opcode.capture!(8, 12)] = cpu.opcode.capture!(0, 8);
break;
case 0x7000: // 0x7XNN Adds NN to VX.
cpu.v[cpu.opcode.capture!(8, 12)] += cpu.opcode.capture!(0, 8);
break;
case 0x8000:
auto x = cpu.opcode.capture!(8, 12);
auto y = cpu.opcode.capture!(4, 8);
switch (cpu.opcode & 0x000F) {
case 0x0000: // 0x8XY0 Sets VX to the value of VY.
cpu.v[x] = cpu.v[y];
break;
case 0x0001: // 0x8XY1 Sets VX to VX or VY.
cpu.v[x] = cpu.v[x] | cpu.v[y];
break;
case 0x0002: // 0x8XY2 Sets VX to VX and VY.
cpu.v[x] = cpu.v[x] & cpu.v[y];
break;
case 0x0003: // 0x8XY3 Sets VX to VX xor VY.
cpu.v[x] = cpu.v[x] ^ cpu.v[y];
break;
case 0x0004: // 0x8XY4 Adds VY to VX. VF is set to 1 when there's a carry, and to 0 when there isn't.
cpu.v[x] += cpu.v[y]; //TODO carry flag
break;
case 0x0005: // 0x8XY5 VY is subtracted from VX. VF is set to 0 when there's a borrow, and 1 when there isn't.
cpu.v[x] -= cpu.v[y]; //TODO borrow flag
break;
case 0x0006: // 0x8XY6 Shifts VX right by one. VF is set to the value of the least significant bit of VX before the shift.
auto vx = cpu.v[x];
cpu.v[0xF] = (vx & 0b10000000) >> 7;
cpu.v[x] >>= 1;
break;
case 0x0007: // 0x8XY7 Sets VX to VY minus VX. VF is set to 0 when there's a borrow, and 1 when there isn't.
cpu.v[x] = cast(Register)(cpu.v[y] - cpu.v[x]); //TODO borrow flag
break;
case 0x000E: // 0x8XYE Shifts VX left by one. VF is set to the value of the most significant bit of VX before the shift.
auto vx = cpu.v[x];
cpu.v[0xF] = (vx & 0b10000000) >> 7;
cpu.v[x] <<= 1;
break;
default: //unhandled for some reason
writefln("unknown opcode: 0x%x", cpu.opcode);
break;
}
break;
case 0x9000: // 0x9XYO Skips the next instruction if VX doesn't equal VY.
if (cpu.v[cpu.opcode.capture!(8, 12)] != cpu.v[cpu.opcode.capture!(4, 8)]) {
pc_target += 2; //do skip yes
}
break;
case 0xA000: // 0xANNN Sets I to the address NNN.
cpu.i = cpu.opcode.capture!(0, 12);
break;
case 0xB000: // 0xBNNN Jumps to the address NNN plus V0.
pc_target = cast(ubyte)cpu.opcode.capture!(0, 12) + cpu.v[0x0];
break;
case 0xC000: // 0xCXNN Sets VX to the result of a bitwise and operation on a random number and NN.
import std.random : uniform;
auto x = cpu.opcode.capture!(8, 12);
cpu.v[x] = uniform(Register.min, Register.max) & cpu.opcode.capture!(0, 8);
break;
// 0xDXYN
// Sprites stored in memory at location in index register (I), 8bits wide.
// Wraps around the screen. If when drawn, clears a pixel, register VF is set to 1 otherwise it is zero.
// All drawing is XOR drawing (i.e. it toggles the screen pixels).
// Sprites are drawn starting at position VX, VY. N is the number of 8bit rows that need to be drawn.
// If N is greater than 1, second line continues at position VX, VY+1, and so on.
case 0xD000:
auto spr_addr = cpu.i;
auto x = cpu.opcode.capture!(8, 12);
auto y = cpu.opcode.capture!(4, 8);
auto n = cpu.opcode.capture!(0, 4);
ushort pixel;
foreach(int row; 0 .. n) {
pixel = ram[spr_addr + row];
foreach (int col; 0 .. 8) {
if ((pixel & (0x80 >> col)) != 0) {
if (screen_buf[(x + col + ((y + row) * 64))] == 1) {
cpu.v[0xF] = 1;
}
screen_buf[x + row + ((y + col) * 64)] ^= 1;
}
}
}
draw_flag = true;
break;
case 0xE000:
auto x = cpu.opcode.capture!(8, 12);
auto key = cpu.v[x];
switch (cpu.opcode & 0x000F) {
case 0x000E: // 0xEX9E Skips the next instruction if the key stored in VX is pressed.
writefln("0xEXA1: skip instruction if VX not pressed: %x", key);
break;
case 0x0001: // 0xEXA1 Skips the next instruction if the key stored in VX isn't pressed.
writefln("0xEXA1: skip instruction if VX not pressed: %x", key);
break;
default: //unhandled for some reason
writefln("unknown opcode: 0x%x", cpu.opcode);
break;
}
break;
case 0xF000:
switch (cpu.opcode & 0x00FF) {
case 0x0007: // 0xFX07 Sets VX to the value of the delay timer.
cpu.v[cpu.opcode.capture!(8, 12)] = cpu.delay_timer;
break;
case 0x000A: // 0xFX0A A key press is awaited, and then stored in VX.
break;
case 0x0015: // 0xFX15 Sets the delay timer to VX.
cpu.delay_timer = cpu.v[cpu.opcode.capture!(8, 12)];
break;
case 0x0018: // 0xFX18 Sets the sound timer to VX.
cpu.sound_timer = cpu.v[cpu.opcode.capture!(8, 12)];
break;
case 0x001E: // 0xFX1E Adds VX to I.
cpu.i += cpu.v[cpu.opcode.capture!(8, 12)];
break;
case 0x0029: // 0xFX29 Sets I to the location of the sprite for the character in VX.
auto vx = cpu.v[cpu.opcode.capture!(8, 12)];
ushort char_addr = 0x200 + (vx * 40); // base of char sprites + value of vx * bits per character
cpu.i = char_addr;
break;
// 0xFX33 Stores the Binary-coded decimal representation of VX,
// with the most significant of three digits at the address in I,
// the middle digit at I plus 1, and the least significant digit at I plus 2.
case 0x0033:
auto vx = cpu.v[cpu.opcode.capture!(8, 12)];
ram[cpu.i] = vx / 100;
ram[cpu.i + 1] = (vx / 10) % 10;
ram[cpu.i + 2] = (vx % 100) % 10;
break;
case 0x0055: // 0xFX55 Stores V0 to VX in memory starting at address I.
auto addr = cpu.i;
foreach (reg; cpu.v) {
ram[addr++] = reg;
}
break;
case 0x0065: // 0xFX65 Fills V0 to VX with values from memory starting at address I.
auto addr = cpu.i;
foreach (ref reg; cpu.v) {
reg = ram[addr++];
}
break;
default: //unhandled for some reason
writefln("unknown opcode: 0x%x", cpu.opcode);
break;
}
break;
default:
writefln("unknown opcode: 0x%x", cpu.opcode);
}
/* now update pc and timer registers. */
cpu.pc = pc_target;
if (cpu.delay_timer != 0u) {
--cpu.delay_timer;
}
if (cpu.sound_timer != 0u) {
if (cpu.sound_timer == 1) {
writefln("beep!");
}
--cpu.sound_timer;
}
} // step
2018-06-22 23:54:39 +01:00
void handle_event(ref SDL_Event ev) {
} // handle_event
void tick() {
if (run_flag) {
step();
}
} // tick
void draw() {
if (draw_flag) {
// update buffer with new pixel data
draw_flag = false;
}
// glPixelZoom(rt.width / 64, rt.height / 32);
// glDrawPixels(64, 32, GL_RGB, GL_UNSIGNED_BYTE, screen_data.ptr);
} // draw
} // Emulator
void load_libs() {
import glad.gl.loader;
DerelictSDL2.load();
2018-06-22 23:54:39 +01:00
DerelictImgui.load();
auto status = gladLoadGL();
}
void init_libs() {
SDL_Init(SDL_INIT_VIDEO);
}
void setup_imgui() {
}
void main() {
load_libs();
init_libs();
Emulator emu;
emu.create();
emu.run();
}
struct Emulator {
bool running;
Window window;
Chip8 chip8;
void create() {
// create window
window.create_window(640, 480);
}
void handle_events() {
SDL_Event event;
while (SDL_PollEvent(&event)) {
2018-06-22 23:54:39 +01:00
chip8.handle_event(event);
switch (event.type) with (SDL_EventType) {
case SDL_QUIT: {
running = false;
break;
}
default: {
break;
}
}
2018-06-22 23:54:39 +01:00
}
} // handle_events
void run() {
running = true;
while (running) {
handle_events();
tick();
draw();
}
}
void tick() {
}
void draw() {
}
}