import std.stdio; import derelict.sdl2.sdl; import derelict.imgui.imgui; import gl : PixelBuffer; import window; import imgui; struct Chip8Status { // emu ptr Emulator* run_; Chip8* emu_; // loaded program const (char)* loaded_program; // mem editor // MemoryEditor mem_editor_; // state bool status_menu_ = true; int stack_cur_ = -1; void initialize(Emulator* run, Chip8* emu) { this.run_ = run; this.emu_ = emu; } // initialize alias Callback = float delegate(int idx, const char** out_text); static extern(C) bool doCallback(void* ptr, int idx, const (char**) out_text) { auto callback = *(cast(Callback*) ptr); callback(idx, out_text); return true; } // doCallback; void getStackFrame(int idx, const (char**) out_text) { static char[32] frame_text; import core.stdc.stdio : sprintf; sprintf(frame_text.ptr, "0x%04X", emu_.stack[idx]); auto p = frame_text.ptr; auto op = cast(char**)out_text; *op = p; } // getStackFrame void resetShortcut() { loaded_program = null; emu_.reset(); } // resetShortcut void loadShortcut() { import std.file : read; loaded_program = "chip8_picture.ch8"; auto buf = read("programs/chip8_picture.ch8"); emu_.load(0x200, buf); // do ze load yes, will copy all the data in } // loadShortcut void saveShortcut() { } // saveShortcut void debugShortcut() { status_menu_ = !status_menu_; } // debugShortcut void redrawShortcut() { emu_.draw_flag = true; } // redrawShortcut void toggleRunShortcut() { emu_.run_flag = !emu_.run_flag; } // toggleRunShortcut void stepShortcut() { emu_.step(); } // stepShortcut void quitShortcut() { run_.quit(); } // quitShortcut void draw() { if (!status_menu_) return; if (igBeginMainMenuBar()) { if (igBeginMenu("Menu")) { if (igMenuItem("Reset", "CTRL+R")) { resetShortcut(); } if (igMenuItem("Load", "CTRL+L")) { loadShortcut(); } if (igMenuItem("Debug", "CTRL+D")) { debugShortcut(); } if (igMenuItem("Quit", "CTRL+Q")) { quitShortcut(); } igEndMenu(); } igEndMainMenuBar(); } { import std.range : chunks; igBegin("Emulator Status"); igBeginChild("General"); if (!loaded_program) { igText("Loaded Program: none"); } else { igText("Loaded Program: %s", loaded_program); } igText("Opcode: 0x%04X", emu_.cpu.opcode); igSameLine(); igText("| PC: 0x%04X (%hu)", emu_.cpu.pc, emu_.cpu.pc); // igDragInt("##pc", cast(int*)&emu_.cpu.pc, 0.5f, 0, emu_.ram.length); igText("Registers (v0 - vF)"); igColumns(4, null, false); igIndent(); auto n = 0; foreach (ref chunk; emu_.cpu.v[].chunks(4)) { igText("v%0X 0x%02X ", n, chunk[0]); igText("v%0X 0x%02X ", n+1, chunk[1]); igText("v%0X 0x%02X ", n+2, chunk[2]); igText("v%0X 0x%02X ", n+3, chunk[3]); igNextColumn(); n += 4; } igColumns(1, null, false); igUnindent(); igText("Index Register: 0x%04X", emu_.cpu.i); igText("Delay Timer: 0x%04X", emu_.cpu.delay_timer); igText("Sound Timer: 0x%04X", emu_.cpu.sound_timer); if (igButton("Reload")) { resetShortcut(); loadShortcut(); } igSameLine(); if (igButton("Reset")) { resetShortcut(); } if (igButton("Step")) { emu_.step(); } igSameLine(); if (igButton((emu_.run_flag) ? "Stop" : "Run")) { emu_.run_flag = !emu_.run_flag; } igText("Stack"); auto d = &getStackFrame; igPushItemWidth(-1); igListBox2("", &stack_cur_, &doCallback, cast(void*)&d, emu_.stack.length, 16); igPopItemWidth(); igEndChild(); igEnd(); } // mem_editor_.draw("Emulator Memory", emu_.ram[]); } // draw void handleEvent(ref SDL_Event ev) { switch (ev.type) with (SDL_EventType) { case SDL_KEYDOWN: if ((ev.key.keysym.mod & KMOD_CTRL) != 0) { switch (ev.key.keysym.scancode) with (SDL_EventType) { case SDL_SCANCODE_R: resetShortcut(); break; case SDL_SCANCODE_L: loadShortcut(); break; case SDL_SCANCODE_D: debugShortcut(); break; case SDL_SCANCODE_G: redrawShortcut(); break; case SDL_SCANCODE_T: toggleRunShortcut(); break; case SDL_SCANCODE_S: stepShortcut(); break; case SDL_SCANCODE_Q: quitShortcut(); break; default: break; } } else { if (ev.key.keysym.scancode == SDL_SCANCODE_ESCAPE) { quitShortcut(); } } break; default: break; } } // handleEvent } // Chip8Status pure @property { ubyte x(in ushort oc) { return (oc & 0x0F00) >> 8; } ubyte y(in ushort oc) { return (oc & 0x00F0) >> 4; } ubyte n(in ushort oc) { return oc & 0x000F; } ubyte nn(in ushort oc) { return (oc & 0x00FF); } ushort nnn(in ushort oc) { return (oc & 0x0FFF); } } struct Chip8 { alias OpCode = ushort; alias ProgramCounter = ushort; alias Memory = ubyte[4096]; alias Stack = ushort[16]; alias Register = ubyte; alias Registers = Register[16]; alias IndexRegister = ushort; alias KeyPad = ubyte[16]; struct CPU { OpCode opcode = 0; //current opcode ProgramCounter pc = 0x200; Registers v; //16 general purpose registers IndexRegister i; Register delay_timer; Register sound_timer; } // CPU CPU cpu; Memory ram; Stack stack; ubyte sp; KeyPad kp; ubyte[64*32] screen_buf; bool run_flag; bool draw_flag; bool reset_flag; void load(size_t offset, in void[] data) { assert(offset + data.length < ram.length); ram[offset .. offset + data.length] = cast(ubyte[])data[]; } // load void reset() { reset_flag = true; cpu = cpu.init; stack = stack.init; ram[0x200 .. $ - 1] = 0; cpu.pc = 0x200; sp = sp.init; run_flag = run_flag.init; draw_flag = draw_flag.init; screen_buf = screen_buf.init; } // reset void step() { // reset if we go OOB if (cpu.pc >= 0xFFF) { reset(); return; } cpu.opcode = ram[cpu.pc] << 8 | ram[cpu.pc + 1]; ushort pc_target = cast(ProgramCounter)(cpu.pc + 2u); // writefln("opcode: 0x%X, pc: 0x%X : %d", cpu.opcode, cpu.pc, cpu.pc); switch (cpu.opcode & 0xF000) with (cpu) { case 0x0000: switch (cpu.opcode & 0x0FFF) { case 0x00E0: // 0x00E0 Clears the screen. screen_buf[0..$] = 0; draw_flag = true; break; case 0x00EE: // 0x00EE Returns from a subroutine. pc_target = stack[--sp]; break; default: // 0x0NNN Calls RCA 1802 program at address NNN. Not necessary for most ROMs. //assert(0, "0x0NNN RCA 1802 program opcode not implemented!"); break; } break; case 0x1000: // 0x1NNN Jumps to address NNN. pc_target = cpu.opcode.nnn; break; case 0x2000: // 0x2NNN Calls subroutine at NNN. stack[sp++] = cpu.pc; pc_target = cpu.opcode.nnn; break; case 0x3000: // 0x3XNN Skips the next instruction if VX equals NN. if (cpu.v[cpu.opcode.x] == (cpu.opcode.nn)) { pc_target += 2u; } break; case 0x4000: // 0x4XNN Skips the next instruction if VX doesn't equal NN. if (cpu.v[cpu.opcode.x] != (cpu.opcode.nn)) { pc_target += 2u; } break; case 0x5000: // 0x5XYO Skips the next instruction if VX equals VY. if (cpu.v[cpu.opcode.x] == cpu.v[cpu.opcode.y]) { pc_target += 2u; } break; case 0x6000: // 0x6XNN Sets VX to NN. cpu.v[cpu.opcode.x] = cpu.opcode.nn; break; case 0x7000: // 0x7XNN Adds NN to VX. cpu.v[cpu.opcode.x] += cpu.opcode.nn; break; case 0x8000: immutable ubyte x = cpu.opcode.x; immutable ubyte y = cpu.opcode.y; switch (cpu.opcode.n) { case 0x0000: // 0x8XY0 Sets VX to the value of VY. cpu.v[x] = cpu.v[y]; break; case 0x0001: // 0x8XY1 Sets VX to VX or VY. cpu.v[x] = cpu.v[x] | cpu.v[y]; break; case 0x0002: // 0x8XY2 Sets VX to VX and VY. cpu.v[x] = cpu.v[x] & cpu.v[y]; break; case 0x0003: // 0x8XY3 Sets VX to VX xor VY. cpu.v[x] = cpu.v[x] ^ cpu.v[y]; break; case 0x0004: // 0x8XY4 Adds VY to VX. VF is set to 1 when there's a carry, and to 0 when there isn't. immutable ubyte vx = cpu.v[x]; immutable ubyte vy = cpu.v[y]; if (cast(ushort)vx + cast(ushort)vy > 255) { cpu.v[0xF] = 1; } else { cpu.v[0xF] = 0; } cpu.v[x] += cpu.v[y]; break; case 0x0005: // 0x8XY5 VY is subtracted from VX. VF is set to 0 when there's a borrow, and 1 when there isn't. immutable ubyte vx = cpu.v[x]; immutable ubyte vy = cpu.v[y]; if (vx > vy) { cpu.v[0xF] = 1; } else { cpu.v[0xF] = 0; } cpu.v[x] -= cpu.v[y]; break; case 0x0006: // 0x8XY6 Shifts VX right by one. VF is set to the value of the least significant bit of VX before the shift. immutable ubyte vx = cpu.v[x]; cpu.v[0xF] = vx & 0x1; cpu.v[x] >>= 1; break; case 0x0007: // 0x8XY7 Sets VX to VY minus VX. VF is set to 0 when there's a borrow, and 1 when there isn't. immutable ubyte vx = cpu.v[x]; immutable ubyte vy = cpu.v[y]; if (vy > vx) { cpu.v[0xF] = 1; } else { cpu.v[0xF] = 0; } cpu.v[x] = cast(Register)(vy - vx); break; case 0x000E: // 0x8XYE Shifts VX left by one. VF is set to the value of the most significant bit of VX before the shift. immutable ubyte vx = cpu.v[x]; cpu.v[0xF] = vx >> 7; cpu.v[x] <<= 1; break; default: // unhandled for some reason writefln("unknown opcode: 0x%x", cpu.opcode); break; } break; case 0x9000: // 0x9XYO Skips the next instruction if VX doesn't equal VY. if (cpu.v[cpu.opcode.x] != cpu.v[cpu.opcode.y]) { pc_target += 2u; // do skip yes } break; case 0xA000: // 0xANNN Sets I to the address NNN. cpu.i = cpu.opcode.nnn; break; case 0xB000: // 0xBNNN Jumps to the address NNN plus V0. pc_target = cast(ProgramCounter)(cpu.opcode.nnn + cpu.v[0x0]); break; case 0xC000: // 0xCXNN Sets VX to the result of a bitwise and operation on a random number and NN. import std.random : uniform; ubyte x = cpu.opcode.x; cpu.v[x] = uniform(Register.min, Register.max) & (cpu.opcode & 0x00FF); break; // 0xDXYN // Sprites stored in memory at location in index register (I), 8bits wide. // Wraps around the screen. If when drawn, clears a pixel, register VF is set to 1 otherwise it is zero. // All drawing is XOR drawing (i.e. it toggles the screen pixels). // Sprites are drawn starting at position VX, VY. N is the number of 8bit rows that need to be drawn. // If N is greater than 1, second line continues at position VX, VY+1, and so on. case 0xD000: immutable ProgramCounter spr_addr = cpu.i; immutable ubyte x = cpu.opcode.x; immutable ubyte y = cpu.opcode.y; immutable ubyte n = cpu.opcode.n; foreach(int row; 0 .. n) { immutable ushort pixel = ram[spr_addr + row]; foreach (int col; 0 .. 8) { if ((pixel & (0x80 >> col)) != 0) { ubyte x_off = cast(ubyte)((x + col) % 64); ubyte y_off = cast(ubyte)((y + row) % 32); ushort offset = x_off + (y_off * 64); if (screen_buf[offset] == 1) { cpu.v[0xF] = 1; } screen_buf[offset] ^= 1; } } } draw_flag = true; break; case 0xE000: ubyte x = cpu.opcode.x; ubyte key = cpu.v[x]; switch (cpu.opcode & 0x000F) { case 0x000E: // 0xEX9E Skips the next instruction if the key stored in VX is pressed. writefln("0xEXA1: skip instruction if VX not pressed: %x", key); break; case 0x0001: // 0xEXA1 Skips the next instruction if the key stored in VX isn't pressed. writefln("0xEXA1: skip instruction if VX not pressed: %x", key); break; default: //unhandled for some reason writefln("unknown opcode: 0x%x", cpu.opcode); break; } break; case 0xF000: switch (cpu.opcode & 0x00FF) { case 0x0007: // 0xFX07 Sets VX to the value of the delay timer. cpu.v[cpu.opcode.x] = cpu.delay_timer; break; case 0x000A: // 0xFX0A A key press is awaited, and then stored in VX. break; case 0x0015: // 0xFX15 Sets the delay timer to VX. cpu.delay_timer = cpu.v[cpu.opcode.x]; break; case 0x0018: // 0xFX18 Sets the sound timer to VX. cpu.sound_timer = cpu.v[cpu.opcode.x]; break; case 0x001E: // 0xFX1E Adds VX to I. if (cpu.i + cpu.v[cpu.opcode.x] > 0xFF) { cpu.v[0xF] = 1; } else { cpu.v[0xF] = 0; } cpu.i += cpu.v[cpu.opcode.x]; break; case 0x0029: // 0xFX29 Sets I to the location of the sprite for the character in VX. immutable ubyte vx = cpu.v[cpu.opcode.x]; immutable ushort char_addr = 0x200 + (vx * 40); // base of char sprites + value of vx * bits per character // immutable ushort char_addr = vx * 0x5; cpu.i = char_addr; break; // 0xFX33 Stores the Binary-coded decimal representation of VX, // with the most significant of three digits at the address in I, // the middle digit at I plus 1, and the least significant digit at I plus 2. case 0x0033: immutable ubyte vx = cpu.v[cpu.opcode.x]; ram[cpu.i] = vx / 100; ram[cpu.i + 1] = (vx / 10) % 10; ram[cpu.i + 2] = (vx % 100) % 10; break; case 0x0055: // 0xFX55 Stores V0 to VX in memory starting at address I. IndexRegister addr = cpu.i; foreach (reg; cpu.v) { ram[addr++] = reg; } break; case 0x0065: // 0xFX65 Fills V0 to VX with values from memory starting at address I. IndexRegister addr = cpu.i; foreach (ref reg; cpu.v) { reg = ram[addr++]; } break; default: // unhandled for some reason writefln("unknown opcode: 0x%x", cpu.opcode); break; } break; default: writefln("unknown opcode: 0x%x", cpu.opcode); } /* now update pc and timer registers. */ cpu.pc = pc_target; if (cpu.delay_timer != 0u) { --cpu.delay_timer; } if (cpu.sound_timer != 0u) { if (cpu.sound_timer == 1u) { writefln("beep!"); } --cpu.sound_timer; } } // step void handleEvent(ref SDL_Event ev) { } // handleEvent void tick() { if (run_flag) { step(); } } // tick } // Emulator void loadLibs() { DerelictSDL2.load(); DerelictImgui.load(); } void initLibs() { SDL_Init(SDL_INIT_VIDEO); SDL_GL_LoadLibrary(null); } void setupImgui() { } void main() { loadLibs(); initLibs(); Emulator emu; emu.create(); emu.run(); } struct Emulator { bool running; // debug Chip8Status status; Window window; Imgui imgui; Chip8 emu; // drawing PixelBuffer buf; void create() { // create window window.createWindow(960, 768); // setup imgui imgui.initialize(); imgui.createDeviceObjects(); // setup debug ui status.initialize(&this, &emu); // debug data emu.screen_buf[0] = 1; emu.screen_buf[64 - 1] = 1; emu.screen_buf[64*32 - 64] = 1; emu.screen_buf[64*32 - 1] = 1; // set up pixel buffer to poke at buf.create(emu.screen_buf.ptr, 64, 32); } void handleEvents() { SDL_Event event; while (SDL_PollEvent(&event)) { imgui.handleEvent(event); status.handleEvent(event); emu.handleEvent(event); switch (event.type) with (SDL_EventType) { case SDL_QUIT: { running = false; break; } default: { break; } } } } // handleEvents void run() { running = true; while (running) { handleEvents(); tick(); draw(); } } void tick() { emu.tick(); } void draw() { window.renderClear(0x428bca); int w, h; window.windowSize(w, h); if (emu.draw_flag || emu.reset_flag) { buf.update(emu.screen_buf); emu.reset_flag = false; emu.draw_flag = false; } buf.draw(w, h); imgui.newFrame(window); status.draw(); imgui.endFrame(); window.renderPresent(); } void quit() { running = false; } }